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Minimum-variance estimation

Estymacja minimalnowariancyjna

Problem formulation

Consider two correlated vector random variables X and Y

and their outcomes x = X(ξ) and y = Y(ξ). Suppose
that only y is known. Find such estimator of x, based
on y and further denoted by x̂(y), that minimizes the
mean-square-error (MSE) criterion

J [ x̂ ] = E
[
‖ X − x̂ ‖2 |Y = y

]
−→ min

mean-square-error / b la̧d średniokwadratowy

x̂(y) =?

Theorem

The least-mean-squares (optimal mean-square-error)
estimator of X given Y is the conditional expectation
of X given Y,i.e., X̂ = E[X|Y]. The resulting estimate is

x̂(y) = E[X|Y = y] =

∫

ΩX

xpX|Y(x|y)dx

where ΩX denotes the support (domain) of the random
variable X.

conditional mean estimator / estymator średniej warunkowej



Minimum-variance estimation

Estymacja minimalnowariancyjna

Proof

Note that

J [ x̂ ] =

∫

ΩX

(x− x̂)T(x − x̂)pX|Y(x|y)dx

=

∫

ΩX

xTxpX|Y(x|y)dx

− 2x̂T

∫

ΩX

xpX|Y(x|y)dx + x̂Tx̂

Requiring

∇x̂ =
∂J [ x̂ ]

∂x̂
= 0

one arrives at

x̂ =

∫

ΩX

xpX|Y(x|y)dx = E[X|Y = y]



Important property of the optimal estimator

Ważna w lasność estymatora optymalnego

The conditional mean estimator is unbiased, i.e.,

E[X − E[X|Y]] = 0

which follows directly from the fact that E[X] = mX and

EY[EX[X|Y]] =

∫

ΩY

∫

ΩX

xpX|Y(x|y)pY(y)dxdy

=

∫

ΩY

∫

ΩX

xpXY(x,y)dxdy =

∫

ΩX

xpX(x)dx = mX

Moreover, for any function of Y, say g(Y), it holds that

E{ [X − E[X|Y]] g(Y)} = 0

which means that the estimation error is orthogonal to
(actually, also uncorrelated with) any transformation of the
data y, i.e., no matter how we modify the data y the
estimation accuracy cannot be further improved.



Evaluation of the posterior density

Wyznaczanie gȩstości rozk ladu a posteriori

Bayes formula / wzór Bayesa

Assuming that pY (y) 6= 0

pX|Y (x|y) =
pXY (x,y)

pY (y)
=

pY |X(y|x)pX(x)∫
ΩX

pY |X(y|x)pX(x)dx

pX(x) – prior distribution (rozk lad a priori), which reflects
our knowledge about x prior to measuring y

pY |X(y|x) – conditional distribution which quantifies
dependence between the estimated value x and the
measurement y

pX|Y (x|y) – posterior distribution (rozk lad a posteriori),
which reflects our knowledge about x after measuring y

Thomas Bayes (1702 - 1761)



Scalar example

Przyk lad skalarny

Suppose that
y = x + w

where y, x and w are realizations of scalar random variables
Y , X and W , respectively. Find the least-mean-squares
estimate of x given y if it is known that the variables X
and W are independent and

X ∼ N (x0, σ
2
0), W ∼ N (0, σ2

W )

Solution

pY |X(y|x) = pW (y − x) =
1√

2πσ2
W

exp

{
−

(y − x)2

2σ2
W

}

pX(x) =
1√
2πσ2

0

exp

{
−

(x − x0)
2

2σ2
0

}

pX|Y (x|y) = c pY |X(y|x)pX(x)

=
c

2π
√

σ2
Wσ2

0

exp

{
−

(y − x)2

2σ2
W

−
(x − x0)

2

2σ2
0

}



One can show that

pY (y) =
1

c
=

∫ ∞

−∞

pY |X(y|x)pX(x)dx

=
1√

2π(σ2
W + σ2

0)
exp

{
−

y2

2(σ2
W + σ2

0)

}

and
(y − x)2

2σ2
W

+
(x − x0)

2

2σ2
0

−
y2

2(σ2
W + σ2

0)

=

(
x −

σ2
W x0+σ2

0y

σ2
W+σ2

0

)2

2
σ2

W σ2
0

σ2
W

+σ2
0

which leads to

pX|Y (x|y) =
1√

2πσ2
X|Y

exp

{
−

(x − mX|Y )2

2σ2
X|Y

}

where
mX|Y =

σ2
Wx0 + σ2

0y

σ2
W + σ2

0

, σ2
X|Y =

σ2
Wσ2

0

σ2
W + σ2

0

Therefore

x̂ = E[X |Y = y] = mX|Y =
σ2

Wx0 + σ2
0y

σ2
W + σ2

0

=

x0

σ2
0
+ y

σ2
W

1
σ2

0
+ 1

σ2
W

var[x̂] = E[(X − x̂)2|Y = y] = σ2
X|Y =

σ2
Wσ2

0

σ2
W + σ2

0



Important relationships for vector

Gaussian variables

Ważne zależności dla wektorowych

zmiennych gaussowskich

Consider two vector random variables Xk×1 and Yn×1

which are jointly normally distributed

[
X

Y

]
∼ N

([
mX

mY

]
,

[
ΣX ΣXY

ΣY X ΣY

])

and

Σ =

[
ΣX ΣXY

ΣY X ΣY

]
> 0

Then the conditional distribution of X given Y is also
normal

pX|Y (x|y) ∼ N (mX|Y ,ΣX|Y )

mX|Y = mX + ΣXY Σ−1
Y (y − mY )

ΣX|Y = ΣX − ΣXY Σ−1
Y ΣY X



Vector example

Przyk lad wektorowy
Suppose that

y = Ax + w

where y, x and w are realizations of scalar random variables
Y, X and W, respectively. Find the least-mean-squares
estimate of x given y if it is known that the variables X

and W are independent and

X ∼ N (x0,Σ0), W ∼ N (0,W)

Solution
x̂ = mX + ΣXY Σ−1

Y (y − mY )

Since
mX = x0, mY = AmX = Ax0

one obtains

y − mY = A(x − mX) + w

Note that

ΣX = E[(X − mX)(X − mX)T] = Σ0

ΣXY = E[(X − mX)(Y − mY )T] = Σ0A
T

ΣY = E[(Y − mY )(Y − mY )T] = AΣ0A
T + W

Therefore (provided that AΣ0A
T + W > 0)

x̂ = x0 + Σ0A
T(AΣ0A

T + W)−1(y − Ax0)



Signal prediction, filtration and smoothing

Predykcja, filtracja i wyg ladzanie sygna lów

Assume that the m-dimensional signal s(t) admits the
following state space description

x(t + 1) = Ax(t) + v(t)

s(t) = Cx(t)

y(t) = s(t) + w(t)

where x(t) denotes the n-dimensional state vector, v(t)
denotes the n-dimensional driving noise vector, y(t) denotes
the m-dimensional measurement vector, w(t) denotes
the m-dimensional measurement noise vector, and An×n,
Cm×n are known matrices.

Find out the estimate of s(t) based on the available data
record Y(T ) = {y(1), . . . ,y(T )}

Y(T ) −→ ŝ(t|T ), x̂(t|T )

ŝ(t|T ) = Cx̂(t|T )

Important cases:

T < t - prediction / predykcja
T = t - filtration / filtracja
T > t - smoothing / wyg ladzanie



State space model of an autoregressive

signal

Model stanowy sygna lu autoregresyjnego

Consider an autoregressive signal governed by

s(t) =
r∑

i=1

ais(t − i) + n(t)

where a1, . . . , ar denote autoregressive coefficients and
{n(t)} denotes zero-mean white noise.

It is easy to check that s(t) has the following state space
representation (one of infinitely many)

x(t + 1) = Ax(t) + v(t)

s(t) = Cx(t)

where
x(t) = [s(t), . . . , s(t − r + 1]T

A =




a1 . . . ar−1 ar

1 0 0
. . . ...

0 1 0


 , v(t) =




1
0
...
0


 n(t + 1)

C = [1, 0, . . . , 0]



Hall of Fame

Galeria S law

Andrei Kolmogorov (1903 - 1987)
“Interpolation and extrapolation,” Bull. Acad. Sci. URSS,

pp. 3-14, 1941.

Norbert Wiener (1894 - 1964)
Extrapolation, Interpolation and Smoothing of

Stationary Time Series, MIT Press, 1949.



Hall of Fame

Galeria S law

Rudolf Kalman (1930)
“A new approach to linear filering and prediction

problems,” Journal of Basic Engineering, Transactions of
ASME, vol. 82, pp. 35-45, 1960.



Kalman filter/predictor – assumptions

Filtr/predyktor Kalmana – za lożenia

We will assume that the noisy signal admits the following
state space description

x(t + 1) = Ax(t) + v(t)

y(t) = Cx(t) + w(t)

where {v(t)} and {w(t)} are zero-mean and mutually
independent white Gaussian noise sequences with known
covariance matrices Vn×n and Wm×m

v(t) ∼ N (0,V)

w(t) ∼ N (0,W)

The initial state x(0) is Gaussian and independent of {v(t)}
and {w(t)}

x(0) ∼ N (x0,P0)



Kalman filter/predictor – terminology

Filtr/predyktor Kalmana – terminologia

Under Gaussian assumption it holds that

p(x(t)|Y(t − 1)) = N (x̂(t|t − 1),P(t|t − 1))

p(x(t)|Y(t)) = N (x̂(t|t),P(t|t))

where
x̂(t|t − 1) = E[x(t)|Y(t − 1)]

predicted (a priori) state estimate
predykcyjna (a priori) ocena stanu

x̂(t|t) = E[x(t)|Y(t)]

filtered (a posteriori) state estimate
filtracyjna (a posteriori) ocena stanu

P(t|t−1) = cov[x̂(t|t−1)] and P(t|t) = cov[x̂(t|t)] denote
the a priori and a posteriori covariance matrices of the
corresponding estimation errors

Three types of recursive algorithms:

x̂(t|t − 1) → x̂(t + 1|t) Kalman predictor

x̂(t|t) → x̂(t + 1|t + 1) Kalman filter

x̂(t|t − 1) → x̂(t|t)

→ x̂(t + 1|t) Kalman filter/predictor



Kalman filter/predictor – basic steps

Filtr/predyktor Kalmana – podstawowe kroki

Kalman filter/predictor is a recursive estimation algorithm
which evaluates minimum-variance state estimates:

1. Evaluate the one-step-ahead state prediction x̂(t|t − 1)
(a priori state estimate).

2. Evaluate the one-step-ahead measurement prediction
Cx̂(t|t − 1).

3. Take a new measurement y(t).

4. Evaluate the one-step-ahead measurement prediction
error ε(t) = y(t) − Cx̂(t|t − 1)

5. Evaluate the corrected state estimate x̂(t|t) that
incorporates information contained in a new
measurement (a posteriori state estimate)

a posteriori state estimate = a priori state estimate
+ gain × (measurement prediction error)



Kalman filter/predictor – algorithm

Filtr/predyktor Kalmana – algorytm

initial conditions / warunki pocza̧tkowe

x̂(0|0) = x0

P(0|0) = P0

time update / aktualizacja czasu

x̂(t + 1|t) = Ax̂(t|t)

P(t + 1|t) = AP(t|t)AT + V

measurement update / aktualizacja pomiarów

ε(t) = y(t) − Cx̂(t|t − 1)

S(t) = CP(t|t − 1)CT + W

K(t) = P(t|t − 1)CTS−1(t)

x̂(t|t) = x̂(t|t − 1) + K(t)ε(t)

P(t|t) = P(t|t − 1) − K(t)S(t)KT(t)

K(t) – Kalman gain / macierz wzmocnień filtru Kalmana



The notion of innovation

Pojȩcie innowacji

The one-step-ahead measurement prediction error ε(t) is
called innovation (innowacja). Innovation means “new
information”. The name stems from the observation that
when ε(t) = 0 the estimation update takes the form

x̂(t|t) = x̂(t|t − 1)

In such a case the measurement y(t) does not bring any
new information that could be incorporated in the process
of estimation of x(t). The only piece of information that is
new is contained in ε(t).

Important properties of the innovation process:

• ε(t) is uncorrelated with past measurements, namely

E{ε(t)g[Y(t − 1)]} = 0

where g[Y(t − 1)] denotes any function of Y(t − 1).

• {ε(t)} is a sequence of Gaussian, zero-mean mutually
uncorrelated random variables with covariance matrix
S(t):

ε(t) ∼ N (0,S(t)) , E[ε(t)ε(τ)] = 0, ∀t 6= τ



Observation 1

The properties of the innovation process can be used to
eliminate false (unreliable) measurements. The following
consistency test is often used

ε
T(t)S−1(t)ε(t) ≤ η0 ?

where η0 is the decision threshold determined empirically,
e.g. η0 = 9.

When the condition above is not fulfilled, one is
recommended to discard (how?) the measurement y(t).

Observation 2

It holds that
P(t|t) ≤ P(t|t − 1), ∀t

which means that a posteriori state estimates are generally
more accurate than the a priori estimate (since they
incorporate an additional piece of information contained
in the measurement y(t)).

Observation 3

The values of the matrices P(t + 1|t), P(t|t) and K(t) do
not depend on measurements, and therefore they can be
computed prior to running Kalman algorithm and saved in
the computer memory.



Observation 4

When state space equations describe a control system

x(t + 1) = Ax(t)+Bu(t) + v(t)

y(t) = Cx(t) + w(t)

where u(t) denotes the measurable input (control) signal,
only one Kalman recursion should be modified

x̂(t + 1|t) = Ax̂(t|t)+Bu(t)

Observation 5

Consider a time-varying system governed by

x(t + 1) = A(t)x(t) + B(t)u(t) + v(t)

y(t) = C(t)x(t) + w(t)

cov[v(t)] = V(t), cov[w(t)] = W(t)

Then the structure of Kalman filter/predictor does not
change. The only difference with respect to the time-
invariant case is that the constant matrices A, B, C, V

and W are replaced with their time-varying counterparts.



Kalman filter/predictor for nonstationary

signals/systems

Filtr/predyktor Kalmana dla

niestacjonarnych sygna lów/uk ladów

x̂(t + 1|t) = A(t)x̂(t|t) + B(t)u(t)

P(t + 1|t) = A(t)P(t|t)AT(t) + V(t)

ε(t) = y(t) − C(t)x̂(t|t − 1)

S(t) = C(t)P(t|t − 1)CT(t) + W(t)

K(t) = P(t|t − 1)CT(t)S−1(t)

x̂(t|t) = x̂(t|t − 1) + K(t)ε(t)

P(t|t) = P(t|t − 1) − K(t)S(t)KT(t)



Stationary Kalman filter – Wiener filter

Stacjonarny filtr Kalmana – filtr Wienera

When the analyzed process is stationary and asymptotically
stable, i.e.,

|λi(A)| < 1, i = 1, . . . , n

Kalman filter/predictor is asymptotically stationary and
asymptotically stable

lim
t→∞

P(t|t − 1) = P∞, lim
t→∞

K(t) = K∞

The steady state matrix P∞ > 0 is the positive definite
solution of the following algebraic Riccati equation

P∞ = A
[
P∞ − P∞CT(CP∞CT + W)−1CP∞

]
AT+V

and the steady state Kalmain gain can be obtained from

K∞ = P∞CT(CP∞CT + W)−1

The steady state predictor takes the form

x̂(t + 1|t) = (A − AK∞C)x̂(t|t − 1)

+ AK∞y(t) + Bu(t)

and is always stable: |λi(A − AK∞C)| < 1, i = 1, . . . , n.



Kalman filter as a state observer

Filtr Kalmana jako obserwator stanu
State observer for the system governed by

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

has the following form

x̂(t + 1) = Ax̂(t) + L[y(t) − Cx̂(t)] + Bu(t)

= (A − LC)x̂(t) + Ly(t) + Bu(t)

Since the state estimation error x̃(t) = x(t) − x̂(t) is
governed by

x̃(t + 1) = (A − LC)x̃(t)

the estimated state converges to the true state iff
|λi(A − LC)| < 1, i = 1, . . . , n.

If the system is observable, one can choose the observer gain
L so as to place the eigenvalues of the matrix (A−LC) in
any prescribed positions.

In the presence of driving noise and measurement noise the
error equation takes the form

x̃(t + 1) = (A − LC)x̃(t) − Lw(t) + v(t)

L = AK∞ is the gain that minimizes the mean square
state estimation error.



Example (academic)

Przyk lad (akademicki)

Design Kalman filter for estimation of the state in the
following system

x(t + 1) = x(t)

y(t) = x(t) + w(t)

w(t) ∼ N (0, σ2
w), x(0) ∼ N (x0, σ

2
0)

In the case considered Kalman recursions take the following
form

x̂(t + 1|t) = x̂(t|t)

p(t + 1|t) = p(t|t)

k(t) =
p(t|t − 1)

p(t|t − 1) + σ2
w

ε(t) = y(t) − x̂(t − 1|t − 1)

x̂(t|t) = x̂(t − 1|t − 1) + k(t)ε(t)

p(t|t) =
p(t|t − 1)σ2

w

p(t|t − 1) + σ2
w

with initial conditions: x̂(0|0) = x0 and p(0|0) = σ2
0.



Note that

p(1|1) =
σ2

w

1 + σ2
w/σ2

0

, p(2|2) =
σ2

w

2 + σ2
w/σ2

0

, . . .

and, more generally,

p(t|t) =
σ2

w

t + σ2
w/σ2

0

, k(t|t) =
1

t + σ2
w/σ2

0

which leads to

x̂(t|t) = x̂(t − 1|t − 1)

+
1

t + σ2
w/σ2

0

[y(t) − x̂(t − 1|t − 1)], x̂(0|0) = x0

We will compare this algorithm with an “intuitive” solution

x̄(t) =
1

t

t∑

i=1

y(i)

which can be also put down in a recursive form

x̄(t) =
(t − 1)x̄(t − 1) + y(t)

t

= x̄(t − 1) +
1

t
[y(t) − x̄(t − 1)], x̄(0) = 0



Example (non-academic) – target tracking

Przyk lad (nieakademicki) – śledzenie

obiektów

Estimate position (xs, ys) and speed (ẋs, ẏs) of the aircraft,
based on radar measurements of the distance r and azimuth
θ (see the figure below). For simplicity restrict analysis to
two dimensions: x and y.

Assuming that the forces Fx, Fy and the mass m of
the aircraft are known, differential equations describing its
dynamics can be written down in the form

ẍs =
Fx

m
= ux

ÿs =
Fy

m
= uy



Target tracking

Let x = [xs, ẋs, ys, ẏs]
T and u = [ux, uy]

T.

The continuous-time state space model of the plane has the
form

ẋ = Acx + Bcu

where

Ac =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , Bc =




0 0
1 0
0 0
0 1


u

Assuming that the control signal u is constant during each
sampling interval of length Ts, one arrives at the following
discrete-time state space model

x(t + 1) = Ax(t) + Bu(t)

where

A = eAcTs =




1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1




B =

∫ Ts

0

eAcτBcdτ =




T 2
s /2 0
Ts 0
0 T 2

s /2
0 Ts






Target tracking – state equation

Since the forces Fx and Fy are not known, we will model
{u(t)} as a random process with zero mean and covariance
matrix

U = cov[u(t)] =

[
σ2

u 0
0 σ2

u

]
, σ2

u =
(∆umax)

2

Ts

where ∆umax denotes the maximum admissible acceleration
change in the interval of length Ts.

In this way, one arrives at the following state equation

x(t + 1) = Ax(t) + v(t)

where {v(t)} denotes the so-called maneuver noise

v(t) = Bu(t)

and

V = cov[v(t)] = Bcov[u(t)]BT = BUBT =

= σ2
u




T 4
s /4 T 3

s /2 0 0
T 3

s /2 T 2
s 0 0

0 0 T 4
s /4 T 3

s /2
0 0 T 3

s /2 T 2
s






Target tracking – output equation

Note that

[
xs(t)
ys(t)

]
=

[
r0(t) sin θ0(t)
r0(t) cos θ0(t)

]
= g[r0(t), θ0(t)]

where r0(t) and θ0(t) denote the true distance and the true
azimuth, respectively.

It holds that

r(t) = r0(t) + ∆r(t)

θ(t) = θ0(t) + ∆θ(t)

Z = cov

{[
∆r(t)
∆θ(t)

]}
=

[
σ2

r 0
0 σ2

θ

]

The quantity

y(t) =

[
r(t) sin θ(t)
r(t) cos θ(t)

]
= g[r(t), θ(t)]

will be further called pseudoobservation.

Using Taylor series expansion, one arrives at

g(r, θ) ∼= g(r0, θ0) −

[
∂g

∂r

∂g

∂θ

] [
∆r
∆θ

]



Target tracking – output equation

This leads to the following output (measurement) equation

y(t) ∼=

[
1 0 0 0
0 0 1 0

]
x(t) + w(t)

where

w(t) = −Σ(t)

[
∆r(t)
∆θ(t)

]

Σ(t) =

[
sin θ(t) r(t) cos θ(t)
cos θ(t) −r(t) sin θ(t)

]

W(t) = cov[w(t)] = Σ(t)cov

{[
∆r(t)
∆θ(t)

]}
ΣT(t)

=

[
w11(t) w12(t)
w21(t) w22(t)

]

w11(t) = σ2
r [sin θ(t)]2 + r2(t)σ2

θ[cos θ(t)]2

w22(t) = σ2
r [cos θ(t)]2 + r2(t)σ2

θ [sin θ(t)]2

w12(t) = [σ2
r − r2(t)σ2

θ] sin θ(t) cos θ(t)

= w21(t)



Extended Kalman filter (EKF)

Rozszerzony filtr Kalmana

Consider a nonlinear dynamic system governed by

x(t + 1) = f [x(t),u(t)] + v(t)

y(t) = h[x(t)] + w(t)

Suppose we already have the estimates x̂(t|t−1) and x̂(t|t).
Assuming that the estimation errors ||x(t)− x̂(t|t−1)|| and
||x(t) − x̂(t|t)|| are small, at the instant t one can use the
following linearizations:

f [x(t),u(t)] ∼= f [x̂(t|t),u(t)] + A(t|t)[x(t) − x̂(t|t)]

h[x(t)] ∼= h[x̂(t|t − 1)] + C(t|t − 1)[x(t) − x̂(t|t − 1)]

where the matrices A(t|t)n×n and C(t|t− 1)m×n are given
by

A(t|t) =
∂f(x,u)

∂xT

∣∣∣∣u=u(t)
x=x̂(t|t)

C(t|t − 1) =
∂h(x)

∂xT

∣∣∣∣
x=x̂(t|t−1)



Extended Kalman filter (EKF)

extended Kalman filter = Kalman filter designed
for a linearized system

x̂(t + 1|t) = f [x̂(t|t),u(t)]

P(t + 1|t) = A(t|t)P(t|t)AT(t|t) + V(t)

ε(t) = y(t) − h[x̂(t|t − 1)]

S(t) = C(t|t − 1)P(t|t − 1)CT(t|t − 1) + W(t)

K(t) = P(t|t − 1)CT(t|t − 1)S−1(t)

x̂(t|t) = x̂(t|t − 1) + K(t)ε(t)

P(t|t) = P(t|t − 1) − K(t)S(t)KT(t)

Does EKF stink ?

unscented transform

unscented Kalman filter (UKF)
bezwonny filtr Kalmana



Example (non-academic) – sensor fusion

Przyk lad (nieakademicki) –  la̧czenie

informacji pochodza̧cych z różnych

czujników

Estimate position (xR, yR) and orientation θR of a 3-wheel
mobile robot, based on measurements of:

• distance d(t) covered by the robot during the last
sampling interval (dead-reckoning based on measuring
rotation of the robot wheels)

• angle α(t) of the steering wheel

• angle β(t) to a beacon B with known coordinates
(xB, yB)



ẋR = v cos θR

ẏR = v sin θR

θ̇R =
v

R
=

v

L
tgα

Assuming that the speed of the robot v = d/Ts and the
steering angle α are constant in each sampling interval, one
arrives at the following set of discrete-time equations

xR(t + 1) = xR(t) +
L

tgα(t)
[sin θR(t + 1) − sin θR(t)]

yR(t + 1) = yR(t) −
L

tgα(t)
[cos θR(t + 1) − cos θR(t)]

θR(t + 1) = θR(t) +
d(t)

L
tgα(t)

β(t) = arctg
yB − yR(t)

xB − xR(t)
+ θR(t)



State space description / Opis w przestrzeni stanów

Using the notation

x(t) =




xR(t)
yR(t)
θR(t)


 , u(t) =

[
d(t)
α(t)

]
, y(t) = β(t)

one can rewrite system equations in the form

x(t + 1) = f [x(t),u(t)]

y(t) = h[x(t)]

where

f [x(t),u(t)] =




xR(t) + L
tgα(t)

[
sin

(
θR(t) + d(t)

L tgα(t)
)
− sin θR(t)

]

yR(t) − L
tgα(t)

[
sin

(
θR(t) + d(t)

L tgα(t)
)
− sin θR(t)

]

θR(t) + d(t)
L tgα(t)




h[x(t)] = arctg
yB − yR(t)

xB − xR(t)
+ θR(t)



Measurement errors / B lȩdy pomiarowe

Note that

u(t) = u0(t) + ∆u(t)

β(t) = β0(t) + ∆β(t)

cov[∆u(t)] =

[
σ2

d 0
0 σ2

α

]
= U

var[∆β(t)] = σ2
β

where ∆u(t) and ∆β(t) denote input and output
measurement errors, respectively.

Since it holds that

f [x(t),u0(t)] ∼= f [x(t),u(t)] + D(t|t)[u0(t) − u(t)]

where

D(t|t) =
∂f(x,u)

∂uT

∣∣∣∣u=u(t)
x=x̂(t|t)

one arrives at the following description that accounts for
measurement errors

x(t + 1) = f [x(t),u(t)] + v(t)

y(t) = h[x(t)] + w(t)

where v(t) = −D(t|t)∆u(t) and w(t) = ∆β(t).



System matrices / Macierze systemowe

V(t) = cov[v(t)] = E[v(t)vT(t)]

= E
[
D(t|t)∆u(t)∆uT(t)DT(t|t)

]

= D(t|t)E
[
∆u(t)∆uT(t)

]
DT(t|t)

= D(t|t)UDT(t|t)

σ2
w = σ2

β

C(t|t − 1) =
∂h(x)

∂xT

∣∣∣∣
x=x̂(t|t−1)

=

[
−

yB − ŷR(t|t − 1)

r2(t)
,
xB − x̂R(t|t − 1)

r2(t)
, 1

]

where

r2(t) = [xB − x̂R(t|t − 1)]2 + [yB − ŷR(t|t − 1)]2

In a similar way one can evaluate

A(t|t) =
∂f(x,u)

∂xT

∣∣∣∣u=u(t)
x=x̂(t|t)

D(t|t) =
∂f(x,u)

∂uT

∣∣∣∣u=u(t)
x=x̂(t|t)



Incorporation of several beacons

Wykorzystanie kilku znaczników

y(t) = h[x(t)] =




h1[x(t)]
h2[x(t)]
h3[x(t)]




How to eliminate outliers ?

Jak wyeliminować b lȩdy grube?

ε
T(t)S−1(t)ε(t) ≤ η0 ?



Numerical stability of Kalman filter

Stabilność numeryczna filtru Kalmana

Since P(t|t − 1) and P(t|t) are covariance matrices of the
corresponding state estimates, they must be symmetric and
positive definite. Both properties may be lost due to finite
precision of calculations.

Remedy 1 (symmetry / symetria)

P(t|t − 1) = [P(t|t − 1) + PT(t|t − 1)]/2

P(t|t) = [P(t|t) + PT(t|t)]/2

Remedy 2 (positive definiteness / dodatnia określoność)

The main source of numerical ill-conditioning is due to the
presence of subtraction in the a posteriori covariance matrix
update

P(t|t) = P(t|t − 1) − K(t)S(t)KT(t)

The following modification, due to Josephs, is free of this
drawback

P(t|t) = [I−K(t)C]P(t|t−1)[I−K(t)C]T+K(t)WKT(t)

but does not guarantee that the matrix P(t|t) will be always
positive definite.



Numerical stability of Kalman filter

Stabilność numeryczna filtru Kalmana

Remedy 2 (symmetry & positive definiteness )

Well-definiteness of the matrices P(t|t), P(t|t − 1) and
S(t) can be ensured if estimation is carried out using square
roots of all covariance matrices involved in computation of
x(t|t − 1) and x(t|t). Let

P̃(t|t − 1)n×n = P1/2(t|t − 1)

P̃(t|t)n×n = P1/2(t|t)

S̃(t)m×m = S1/2(t)

Ṽn×n = V1/2

W̃m×m = W1/2

which means that

P̃(t|t − 1)P̃T(t|t − 1) = P(t|t − 1)

P̃(t|t)P̃T(t|t) = P(t|t)

S̃(t)S̃T(t) = S(t)

ṼṼT = V

W̃W̃T = W

square root of a matrix / pierwiastek kwadratowy macierzy



Square root Kalman filter/predictor

Pierwiastkowy filtr/predyktor Kalmana

time update / aktualizacja czasu

x̂(t + 1|t) = Ax̂(t|t)

P(t + 1|t) = AP(t|t)AT + V

Find such an orthogonal 2n × 2n matrix Qp

QpQ
T
p = I

which converts the matrix

[
AP̃(t|t) Ṽ

]
n×2n

into the lower block triangular form, namely

[
AP̃(t|t) Ṽ

]
Qp =

[
P̃(t + 1|t) O

]



Square root Kalman filter/predictor

Pierwiastkowy filtr/predyktor Kalmana

measurement update / aktualizacja pomiarów

x̂(t|t) = x̂(t|t − 1) + K(t)ε(t)

P(t|t) = P(t|t − 1) − K(t)S(t)KT(t)

Find such an orthogonal (n + m) × (n + m) matrix Qf

QfQ
T
f = I

which converts the matrix

[
W̃ CP̃(t|t − 1)

O P̃(t|t − 1)

]

(n+m)×(n+m)

into the lower block triangular form, namely

[
W̃ CP̃(t|t − 1)

O P̃(t|t − 1)

]
Qf =

[
S̃(t) O

K(t)S̃(t) P̃(t|t)

]

x̂(t|t) = x̂(t|t − 1) +
[
K(t)S̃(t)

]
S̃−1(t)ε(t)



Approaches to matrix triangularization

Podej́scia do triangularyzacji macierzy

The most often used methods:

• Givens rotations / obroty Givensa

• Hausholder transformations / przekszta lcenia
Hauseholdera

• Gram-Schmidt transformations / przekszta lcenia
Grama-Schmidta

Givens rotations

An interesting class of square root algorithms can be
obtained by applying circular plane (Givens) rotations.
Denote by Tij(A) = [tij], j > i, the k × k circular plane
rotation matrix which can be used to annihilate (reduce to
zero) the (i, j) element of an arbitrary k × l, l ≥ k, matrix
A = [aij]. Let

c = cos α =
1√

1 + ρ2

s = sinα =
ρ√

1 + ρ2

α = arctgρ , ρ =
aij

aii



Givens rotations

Obroty Givensa

Tij(A) =




1
. . .

c −s
. . .

1
. . .

s c
. . .

1




tii = tjj = c , tij = − tji = s

It is straightforward to check that

TijT
T
ij = Ik, [ATij]ij = 0

Note that

1. Since Tij differs from the identity matrix only in
its (i, i), (i, j), (j, i) and (j, j) components, only two
columns of A (i and j) are modified when rotation is
executed.

2. If the superdiagonal elements of the ith column of A
are zero (a1i = . . . = ai−1,i = 0), rotation preserves
all zero elements of the jth column located above aij

(a1j, . . . , ai−1,j).



Givens rotations

Obroty Givensa

One can use both properties for sequential triangularization
purposes, selecting the rotation matrix in the form (row
sweep)

T =

k∏

i=1




l∏

j=i+1

Tij


 = Tr

or in the form (column sweep)

T =
l∏

j=2




min(j−1,k)∏

i=1

Tij


 = Tc

Such transforms are equivalent to performing a sequence
of Givens rotations, each of which annihilates a particular
element of the upper triangle of the transformed matrix.
Using this approach one gets (schematically)




x x x x
x x x x
x x x x


T =




x 0 0 0
x x 0 0
x x x 0




In the case of 3 × 4 matrices

Tr = T12T13T14T23T24T34 , Tc = T12T13T23T14T24T34



Givens rotations

Obroty Givensa

Caution is needed when interpreting the relationships listed
above. Strictly speaking, the operation

ATi1j1Ti2j2 . . . Timjm = B

should be written in the form

B1 = ATi1j1(A),

B2 = B1Ti2j2(B1),

...

Bm = Bm−1Timjm(Bm−1),

B = Bm,

i.e. the sine and cosine parameters of the orthogonal matrix
Tiljl

, 1 ≤ l ≤ m, cannot be evaluated before the first l − 1
transformations are actually performed.



Kalman smoothing

Wyg ladzanie Kalmana

x̂(t|T ) = E[x(t)|Ω(T )] , T > t

fixed-lag smoothing

wyg ladzanie ze sta lym opóźnieniem

x̂(t − τ |t) , t = τ + 1, τ + 2, . . .

fixed-interval smoothing

wyg ladzanie ze sta lym przedzia lem

x̂(t|N) , t = 1, . . . , N

fixed-point smoothing

wyg ladzanie sta lopunktowe

x̂(t0|t) , t = t0, t0 + 1, . . .



Fixed-interval smoothing

Wyg ladzanie ze sta lym przedzia lem

Mayne-Fraser smoothing formula

The smoothed estimate x̂(t|N) and its covariance matrix
P(t|N) can be obtained by combining the estimates
yielded by the forward Kalman filter and backward Kalman
predictor, or equivalently, by combining the results provided
by the forward Kalman predictor and backward Kalman
filter. The resulting smoothing formula is known as the
Mayne-Fraser two-filter algorithm

x̂(t|N) = P(t|N)
[
P−1(t|t)x̂(t|t)

+P−1
∗ (t|t + 1)x̂∗(t|t + 1)

]

= P(t|N)
[
P−1(t|t − 1)x̂(t|t − 1) + P−1

∗ (t|t)x̂∗(t|t)
]

P(t|N) =
[
P−1(t|t) + P−1

∗ (t|t + 1)
]−1

=
[
P−1(t|t − 1) + P−1

∗ (t|t)
]−1

t = 1, . . . , N

where x̂∗(t|t + 1) [x̂∗(t|t)] are state predictions [estimates]
based on the future [present & future] measurements
Ω∗(t + 1) [Ω∗(t)]: Ω∗(t) = {U∗(t),Y∗(t)}, U∗(t) =
{u(t), . . . ,u(N)}, Y∗(t) = {y(t), . . . , y(N)}, and P∗(t|t +
1), P∗(t|t) denote the corresponding covariance matrices.



All quantities needed to evaluate x̂(t|N) can be computed
recursively using two Kalman filters/predictors: one running
forwards in time, governed by the forward-time model

x(t + 1) = Ax(t) + Bu(t) + v(t)

y(t) = Cx(t) + w(t)

and another one, designed for the backward-time system
model (we assume that the state transition matrix A is
nonsingular, i.e., invertible)

x(t) = A∗x(t + 1) + B∗u(t) + v∗(t + 1)

y(t) = Cx(t) + w(t)

and running backwards in time.

A∗ = A−1

B∗ = −BA−1

v∗(t + 1) = −A−1v(t)

V∗ = cov[v∗(t)] = A−1VA−T

The initial conditions for the backward Kalman filter should
be set to x̂∗(N |N) = 0, P−1

∗ (N |N) = O.



Rauch-Tung-Striebel smoothing formula

Let
F(t) = P(t|t)ATP−1(t + 1|t).

The Rauch-Tung-Striebel formula can be summarized as
follows

x̂(t|N) = x̂(t|t) + F(t) [x̂(t + 1|N) − x̂(t + 1|t)]

P(t|N) = P(t|t) + F(t)[P(t + 1|N) − P(t + 1|t)]FT(t)

t = N − 1, . . . , 1

The initial conditions x̂k(N |N) and Pk(N |N) are provided
by the forward Kalman filter.

Bryson-Frazier smoothing formula

Let
G(t) = A[I− K(t)C]

The Bryson-Frazier formula is given in the form

r(t − 1) = GT(t)r(t) + CTS−1(t)ε(t)

R(t − 1) = GT(t)R(t)G(t) + CTS−1(t)C

x̂(t|N) = x̂(t|t − 1) + P(t|t − 1)r(t − 1)

P(t|N) = P(t|t − 1) − P(t|t − 1)R(t − 1)P(t|t − 1)

t = N − 1, . . . , 1

with initial conditions set to r(N) = 0 and R(N) = O.



Linear quadratic Gaussian (LQG) controller

Regulator liniowo-kwadratowe-Gaussa

Assume that the controlled system admits the following
state space description

x(t + 1) = Ax(t) + Bu(t) + v(t)

y(t) = Cx(t) + w(t)

where {v(t)} and {w(t)} are zero-mean and mutually
independent white Gaussian noise sequences with known
covariance matrices Vn×n ≥ O and Wm×m > O

v(t) ∼ N (0,V)

w(t) ∼ N (0,W)

The initial state x(0) is Gaussian and independent of {v(t)}
and {w(t)}

x(0) ∼ N (x0,P0), P0 ≥ O

control problem

u(0), . . . ,u(N − 1) : x(0) 6= 0 −→ x(N) = 0

accuracy ? transient behavior ? control cost ?



Formulation of the stochastic

control problem

Sformu lowanie problemu

sterowania stochastycznego

Find the control signal that minimizes the following cost
function

J [u(0), . . . ,u(N − 1)]

= E

{
xT(N)Q0x(N) +

N−1∑

t=0

xT(t)Q1x(t)

+
N−1∑

t=0

uT(t)Q2u(t)

}
−→ min

where Q0, Q1 and Q2 denote weighting matrices:

Q0 ≥ O weighting of the terminal control error
Q1 ≥ O weighting of the transient control error
Q2 > O weighting of the control effort

When we aim at stabilizing the state vector around zero
(infinite control horizon), the performance measure becomes

lim
N→∞

1

N
J [u(0), . . . ,u(N − 1)]

= E
[
xT(t)Q1x(t) + uT(t)Q2u(t)

]
−→ min



Control under complete state information

Sterowanie w przypadku pe lnej

informacji o stanie

Suppose that
y(t) = x(t)

Note that this is equivalent to setting C = I and W = O.

We will look for a physically realizable control rule (fizycznie

realizowalna regu la sterowania) u(t) = f [X (t),U(t − 1)],
X (t) = {x(0), . . . ,x(t)}, U(t) = {u(0), . . . ,u(t)}, that
minimizes the quadratic performance measure.

It can be shown that the optimal control sequence u∗(t), t ∈
[0, N − 1] takes the form

u∗(t) = −R(t)x(t)

where

R(t) =
[
Q2 + BTH(t + 1)B

]−1
BTH(t + 1)A

and H(t) is the matrix evaluated recursively according to

H(t) = Q1 + ATH(t + 1)A − ATH(t + 1)B

×
[
Q2 + BTH(t + 1)B

]−1
BTH(t + 1)A

with the initial condition set to

H(N) = Q0



Observation 1

The matrices H(N), . . . ,H(0) must be evaluated
backwards in time and memorized, i.e., it is not possible to
to simultaneously update the gain matrix R(t) and evaluate
the control signal u∗(t).

Observation 2

The optimal control strategy does nor depend on the value
of the covariance matrix V, i.e., it has exactly the same
form as the control strategy developed for a deterministic

system

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

under the deterministic measure of fit

J [u(0), . . . ,u(N − 1)]

= xT(N)Q0x(N) +
N−1∑

t=0

xT(t)Q1x(t)

+

N−1∑

t=0

uT(t)Q2u(t) −→ min



Linear quadratic regulator (LQR)

Regulator liniowo-kwadratowy

When N → ∞ (tracking problem) the optimal control
strategy takes the form

u∗(t) = −R∞x(t)

where
R∞ =

[
Q2 + BTH∞B

]−1
BTH∞A

and H∞ > O is the positive definite solution of the following
algebraic (matrix) Riccati equation

H∞ = Q1 + ATH∞A − ATH∞B

×
[
Q2 + BTH∞B

]−1
BTH∞A

The solution of this equation exists provided that the system
is controllable.

Jacopo Francesco Riccati (1676 - 1754)



Control under incomplete state information

Sterowanie w przypadku niepe lnej

informacji o stanie

Suppose that

y(t) = Cx(t) + W, W > O

We will look for a physically realizable optimal control rule
of the form

u(t) = f [Y(t),U(t − 1)] or u(t) = f [Y(t − 1),U(t − 1)]

where Y(t) = {y(0), . . . ,y(t)}.

It can be shown that the optimal control sequence u∗(t), t ∈
[0, N − 1] takes the form

u∗(t) = −R(t)x̂(t|t) or u∗(t) = −R(t)x̂(t|t − 1)

where R(t) denotes the control gain matrix, determined as if
the full state information was available, and x̂(t|t)/x̂(t|t−1)
are state estimates yielded by the Kalman filter/predictor
designed for an open-loop control system:

x̂(t|t) = x̂(t|t − 1) + K(t)[y(t) − Cx̂(t|t − 1)]

x̂(t + 1|t) = Ax̂(t|t) + Bu∗(t)

etc.



Separation principle

Zasada separacji

Note that

• The gain R(t) of the optimal controller does not depend
on the covariance matrices V and W – it depends
only on system matrices (A,B) and weighting matrices
(Q0,Q1,Q2) which characterize a deterministic control
problem.

• The Kalman gain matrix K(t) does not depend on the
control gain R(t) as if the state estimation was carried
for an open-loop system.

The result presented above is often called a principle of

separation of estimation and control (zasada separacji

estymacji i sterowania) as it tells us that, under the
assumptions made, the problem of designing an optimal
feedback controller for a stochastic system can be broken
into two separate parts, namely it can be solved by
combining:

• an optimal observer designed for a stochastic system

with

• an optimal controller designed for a deterministic system



Robustness properties of LQR controllers

Odporność regulatorów LQR

When the plant is observable and controllable, the closed-
loop system incorporating the LQR controller is guaranteed
to be asymptotically stable.

Additionally, LQR controllers are inherently robust with
respect to plant uncertainty, as they guarantee pretty
satisfactory stability margins:

• positive gain margin of +∞

• negative gain margin of − 6 dB

• phase margin of ± 60◦

Since the LQR design procedure automatically produces
controllers that are stable and robust, it is often used
even if one does not really care about optimizing for
energy. Moreover, this procedure is applicable to multiple-
input/multiple-output plants for which classical designs are
difficult to apply.

To obtain desirable properties of the closed-loop system
(other than the ones mentioned above) the cost matrices
Q1 and Q2 are usually adjusted iteratively using a trial-and-
error design procedure.



Robustness properties of LQG controllers

Odporność regulatorów LQG

When the plant is observable and controllable, the closed-
loop system incorporating the LQG controller is always
asymptotically stable.

For minimum phase plants the same stability margins can be
achieved as those guaranteed by the LQR, provided that a
special design technique, known as “loop recovery”, is used.
Without loop recovery stability margins may be arbitrarily
small.

For non-minimum phase plants no stability margins can be
guaranteed.



Moving average processes

Procesy średniej ruchomej

If the noise shaping filter H(q−1) is adopted in the form

H(q−1) = 1 +
s∑

i=1

ciq
−i = C(q−1)

i.e., it is an all-zero filter of order s, the corresponding
output process is called a moving average

MA(s) : y(t) = n(t) +
s∑

i=1

cin(t − i)

Note that y(t) is a weighted sum of a finite number of past
noise samples. Although the phrase “moving average” is
somewhat misleading (in general the weights 1, c1, . . . , cs

do not sum to one), it is widely used in the statistical
literature on time series.

Since C(q−1) is a finite impulse response (FIR) filter, the
wide sense stationarity of an MA(s) process is guaranteed
for every t > s, irrespective of initial conditions.



Autocorrelation function of a MA process

Funkcja autokorelacji procesu MA

Let c0 = 1. Straightforward calculations yield

0 ≤ τ ≤ s :

Ry(τ) = E[y(t)y(t − τ)] = E

{[
n(t) +

s∑

i=1

cin(t − i)

]

×

[
n(t − τ) +

s∑

i=1

cin(t − τ − i)

]}

= σ2
n

[
cτ +

s−τ∑

i=1

cicτ+i

]

τ > s :

Ry(τ) = 0

Unlike the AR case, the autocorrelation equations for
the MA process are nonrecursive. They allow explicit
computation of autocorrelation coefficients Ry(τ) given
the set c1, . . . , cs and σ2

n. However, solution of the
inverse (identification) problem – determination of the
MA coefficients based on the set of known autocorrelation
coefficients – is much more difficult due to the fact that
the expressions derived above are not linear in the process
parameters.



Power spectrum of a MA process

Widmo mocy procesu MA

Since the MA process is a result of passing white noise
through a linear all-zero filter C(q−1), its power spectral
density function can be expressed in the form

Sy(ω) =
∣∣C(e−jω)

∣∣2 σ2
n =

∣∣∣∣∣1 +
s∑

i=1

cie
−jωi

∣∣∣∣∣

2

σ2
n

While the power spectrum of an AR process can be
characterized in terms of spectral peaks (resonances), the
spectrum of an MA process is in some sense composed of
spectral valleys (antiresonances). Based on the distribution
of zeros of C(q−1) one can give qualitative assesment for
the shape of the MA spectrum:

• Each pair of complex-conjugate zeros can introduce one
spectral valley (antiresonance).

• The angular frequency coordinate of a spectral valley
is approximately equal to the phase angle of the
corresponding zero.

• The depth of a spectral valley is inversely proportional
to the distance of the corresponding zero from the unit
circle.

Like the rules for the AR case, they should be used with
caution.



Approximate relationship between the location of noise
shaping filter poles in the complex plane (a) and the shape
of the spectral density function (b) of the corresponding
MA process.



Invertibility of a MA process

Odwracalność procesu MA

Special case

Consider the MA(1) process governed by

y(t) = n(t) + cn(t − 1)

Can one recover {n(t)} based on {y(t)}?

Note that
n(t) = y(t) − cn(t − 1)

Consider the following recursive “inversion” scheme

n̂(t) = y(t) − cn̂(t − 1)

Let η(t) = n(t) − n̂(t). Observe that

η(t) = −cη(t − 1) = (−c)tη(0)

Hence, irrespective of the initial error η(0), it holds that

|c| < 1 =⇒ lim
t→∞

η(t) = 0

invertible MA process



Invertibility of a MA process

Odwracalność procesu MA

General case

n(t) = y(t) −
s∑

i=1

cin(t − i)

n̂(t) = y(t) −
s∑

i=1

cin̂(t − i)

η(t) = −
s∑

i=1

ciη(t − i)

C(q−1)η(t) = 0

inveribility condition / warunek odwracalności

Denote by q1, . . . , qs the zeros of the forming filter H(q−1),
i.e. the roots of the polynomial C(q−1)

C(q−1
k ) = 1 +

s∑

i=1

ciq
−i
k = 0, k = 1, . . . , s

The MA(s) process is invertible if all roots of C(q−1)
lie inside the unit circle in the complex plane: |qk| < 1,
k = 1, . . . , s. In such a case

lim
t→∞

[n̂(t) − n(t)] = 0



Invertibility of a MA process

Odwracalność procesu MA

What should one do if the invertibility condition is not
fulfilled? The answer is somewhat surprising: every moving
average process with no spectral zeros on the unit circle has
an invertible representation.

Theorem

Consider a noninvertible MA(s) process

y(t) = C(q−1)n(t) = n(t) +

s∑

i=1

cin(t − i)

such that C(q−1) has no zeros on the unit circle and at
least one zero outside the unit circle in the complex plane.
Let {n(t)} denote a white noise sequence of variance σ2

n.

There exists a unique invertible second-order-equivalent re-
presentation of the process defined above

y(t) = C̃(q−1)ñ(t) = ñ(t) +
s∑

i=1

c̃iñ(t − i),

such that C̃(q−1) has all zeros inside the unit circle
and {ñ(t)} is another, different from {n(t)}, white noise
sequence of variance σ2

ñ > σ2
n.



Special case

Consider the MA(1) process governed by

y(t) = n(t) + cn(t − 1)

Note that

Ry(0) = (1 + c2)σ2
n, Ry(1) = cσ2

n

and hence
Ry(0)

Ry(1)
=

1 + c2

c

which can be rewritten as a quadratic equation with respect
to c

c2 −
Ry(0)

Ry(1)
c + 1 = 0

Such a quadratic equation has two solutions c and c̃ which,
according to the Vieta’s formulas, must obey: c · c̃ = 1

|c| > 1 =⇒ |c̃| < 1

Additionally, it holds that

Ry(1) = c̃σ2
ñ = cσ2

n =⇒ σ2
ñ =

c

c̃
σ2

n = c2σ2
n > σ2

n



General case

Two zero-mean processes are second-order-equivalent if they
have identical autocorrelation functions (or, equivalently,
the same power spectral density functions). Therefore, to
prove Theorem it is sufficient to show how to construct an
invertible polynomial C̃(q−1) such that

Sy(ω) = |C̃(e−jω)|2σ2
ñ = |C(e−jω)|2σ2

n

Rewrite C(q−1) in a factorized form

C(q−1) = (1 − q1q
−1) × · · · × (1 − qsq

−1)

where q1, . . . , qs are the zeros of C(q−1). Note that

|C(e−jω)|2 =

s∏

i=1

|1 − qie
−jω|2

Suppose that the ith zero of C(q−1) lies outside the unit
circle, i.e. |qi| > 1. Since

|1 − qie
−jω|2 = |qi|

2

∣∣∣∣1 −
1

q⋆
i

e−jω

∣∣∣∣
2

one can rewrite |C(e−jω)|2 in the form

|C(e−jω)|2 = δ|C̃(e−jω)|2



where

C̃(q−1) =
s∏

i=1

(1 − q̃iq
−1)

q̃i =

{
1/q⋆

i if |qi| > 1
qi if |qi| < 1

and

δ =
s∏

i=1

δi, δi =

{
|qi|2 if |qi| > 1
1 if |qi| < 1

Observe that all zeros of C̃(q−1) lie inside the unit circle
and that δ > 1, since at least one zero of C(q−1) was
assumed to lie outside the unit circle. Finally, note that
putting

σ2
ñ = δσ2

n > σ2
n

one can rewrite C(q−1)n(t) as C̃(q−1)ñ(t), which completes
our construction of an invertible MA representation.

All representations are equivalent in the sense that
they characterize stochastic processes with an identical
covariance structure. Even though invertible and noninver-
tible models can be used to generate an MA process, only
the invertible model can be effectively used to predict its
future. Consequently, the invertible MA representation is
the only one that has a practical significance. Note that the
driving noise variance, and hence also the limiting value of
the mean square one-step-ahead prediction error, takes the
largest value for the invertible process representation.



Equivalence of AR and MA models

Równoważność modeli AR i MA

Theorem

Every finite-order wide-sense stationary autoregressive
process can be described by an invertible infinite-order
moving average model and vice versa.

T (q−1)y(t) = n(t) ⇐⇒ y(t) =
1

T (q−1)
n(t)

Example 1

AR(1) : y(t) = ay(t − 1) + n(t), |a| < 1

⇓

(1 − aq−1)y(t) = n(t)

⇓

y(t) =
1

1 − aq−1
n(t)

1

1 − aq−1
= 1 +

∞∑

i=1

aiq−i

⇓

MA(∞) : y(t) = n(t) +
∞∑

i=1

ain(t − i)



Example 2

MA(1) : y(t) = n(t) + cn(t − 1), |c| < 1

⇓

y(t) = (1 + cq−1)n(t)

⇓
1

1 + cq−1
y(t) = n(t)

1

1 + cq−1
= 1 +

∞∑

i=1

(−c)iq−i

⇓

AR(∞) : y(t) = −
∞∑

i=1

(−c)iy(t − i) + n(t)

In view of the asymptotic equivalence of AR and MA
models, should one care which modeling option to choose?
According to the principle of parsimony certainly yes.
Processes that can be satisfactorily approximated by low-
order autoregressive models may require tens of MA
parameters to reach a comparable degree of approximation
and vice versa. A good trade-off between the approximation
quality and the model complexity can usually be achieved
by combining in one description both autoregressive and
moving average terms; this is the so-called ARMA model.



Power spectrum of a second-order AR process (a) and its
16-th order MA approximation.



Power spectrum of a second-order MA process (a) and its
16-th order AR approximation.



Mixed autoregressive moving average

process

Proces mieszany autoregresji - średniej

ruchomej

The mixed autoregressive moving average (ARMA) model
combines both AR and MA terms:

y(t) =

r∑

i=1

aiy(t − i) + n(t) +

s∑

i=1

cin(t − i)

which is equivalent to adopting the following noise shaping
filter with both poles and zeros:

H(q−1) =
C(q−1)

A(q−1
=

1 +
∑s

i=1 ciq
−i

1 −
∑r

i=1 aiq−i

The ARMA process is asymptotically stationary if all zeros
of A(q−1) lie inside the unit circle in the complex plane; it
is invertible if its moving average part is invertible, i.e. if all
zeros of C(q−1) lie inside the unit circle.

The spectral density function of an ARMA signal can be
expressed in the form

Sy(ω) =
|C(e−jω)|2

|A(e−jω)|2
σ2

n =
|1 +

∑s
i=1 cie

−jωi|2

|1 −
∑r

i=1 aie−jωi|2
σ2

n



Since the noise shaping filter H(q−1) has both poles and
zeros, the spectrum of an ARMA process can easily match
the spectral peaks and spectral valleys of the modeled signal

Approximate relationship between the location of shaping
filter poles and zeros in the complex plane (a) and the shape
of the spectral density function (b) of the corresponding
ARMA process.



ARX and ARMAX models of

controlled systems

Modele ARX i ARMAX obiektów sterowania

ARX – autoregressive with exogenous input

y(t) =
r∑

i=1

aiy(t − i) +

p∑

i=0

biu(t − i − k) + n(t)

A(q−1)y(t) = B(q−1)u(t − k) + n(t)

where

B(q−1) =

p∑

i=0

biq
−i

and k ≥ 1 denotes transport delay (opóźnienie transporto-

we).

ARMAX – autoregressive moving average
with exogenous input

y(t) =
r∑

i=1

aiy(t − i) +

p∑

i=0

biu(t − i − k)

+ n(t) +
s∑

i=1

cin(t − i)

A(q−1)y(t) = B(q−1)u(t − k) + C(q−1)n(t)



Minimum-variance control

Sterowanie minimalnowariancyjne
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u(t) : var[x(t)] −→ min



Example

Paper production plant owned by
the Billerund company (Sweden)

130,000 t/year

DRYING SECTION

STEAM

PAPER

COUCH

VACUUM

GAUGE

SELF - TUNING

  REGULATOR

SET

POINT

MOISTURE 

    GAUGE

The steam drying section of the paper production line.



Minimum-variance control

Sterowanie minimalnowariancyjne

Introductory example 1

Consider the problem of minimum-variance control of an
ARX plant with unity delay (k = 1)

y(t + 1) =

r∑

i=1

aiy(t + 1 − i) + b0u(t)

+

p∑

i=1

biu(t − i) + n(t + 1)

u(t) : E[y2(t)] −→ min

⇓

u(t) = −
1

b0

[
r∑

i=1

aiy(t + 1 − i) +

p∑

i=1

biu(t − i)

]

= uMV(t)

⇓

y(t) = n(t), σ2
y = σ2

n



Invertibility of ARMAX models

Odwracalność modeli ARMAX

Consider an ARMAX model

A(q−1)y(t) = B(q−1)u(t − k) + C(q−1)n(t)

and let

n̂(t) = −
s∑

i=1

cin̂(t − i) + y(t) −
r∑

i=1

aiy(t − i)

−

p∑

i=0

biu(t − i − k)

with arbitrary initial conditions n̂(1), . . . , n̂(s).

Note that this recursive scheme can be compactly written
down in the form

C(q−1)n̂(t) = A(q−1)y(t) − B(q−1)u(t − k)

Fact 1

When the ARMAX model is invertible, i.e., when if all zeros
of C(q−1) lie inside the unit circle in the complex plane, it
holds that

lim
t→∞

[n̂(t) − n(t)] = 0

Fact 2

Every noninverible ARMAX model has its invertible
representation.



Minimum-variance control

Sterowanie minimalnowariancyjne

Introductory example 2

Consider the problem of minimum-variance control of the
following ARMAX plant

y(t) = ay(t − 1) + bu(t − 1) + n(t) + cn(t − 1)

A(q−1) = 1 − aq−1

B(q−1) = b

C(q−1) = 1 + cq−1

y(t + 1) =
b

1 − aq−1
u(t) +

1 + cq−1

1 − aq−1
n(t + 1)

Since
1 + cq−1

1 − aq−1
= 1 +

(c + a)q−1

1 − aq−1

one obtains

y(t + 1) =
b

1 − aq−1
u(t) + n(t + 1) +

(c + a)

1 − aq−1
n(t)



Minimum-variance control

Sterowanie minimalnowariancyjne

Requiring that

b

1 − aq−1
u(t) +

(c + a)

1 − aq−1
n(t) = 0

one arrives at

u(t) = −
c + a

b
n(t), y(t) = n(t)

which finally leads to

u(t) = −
c + a

b
y(t) = uMV(t)

Note that the MV controller for this plant can be
alternatively put down in the form

u(t) = −
1

b
[ay(t) + cn̂(t)]

n̂(t) = −cn̂(t − 1) + y(t)

− ay(t − 1) − bu(t − 1)



Minimum-variance control

Sterowanie minimalnowariancyjne

General case

Consider the problem of minimum-variance control of the
following invertible ARMAX plant

A(q−1)y(t) = B(q−1)u(t − k) + C(q−1)n(t)

where (for simplicity) deg(A) = deg(B) = deg(C) = r:

A(q−1) = 1 −
r∑

i=1

aiq
−i

B(q−1) =
r∑

i=0

biq
−i

C(q−1) = 1 +
r∑

i=1

ciq
−i

Note that

y(t + k) =
B(q−1)

A(q−1)
u(t) +

C(q−1)

A(q−1)
n(t + k)



Denote by F (q−1) and G(q−1) the polynomials that obey
the following Diophantine equation (równanie diofantyczne)

C(q−1)

A(q−1)
= F (q−1) + q−k G(q−1)

A(q−1)

where deg(F ) = k − 1, deg(G) = r − 1:

F (q−1) = 1 +

k−1∑

i=1

fiq
−i

G(q−1) =
r−1∑

i=0

giq
−i

y(t + k) = F (q−1)n(t + k) +
B(q−1)

A(q−1)
u(t)

+
G(q−1)

A(q−1)
n(t)

n(t) =
A(q−1)

C(q−1)
y(t) − q−k B(q−1)

C(q−1)
u(t)

y(t + k) = F (q−1)n(t + k) +
G(q−1)

C(q−1)
y(t)

+

[
B(q−1)

A(q−1)
− q−k B(q−1)G(q−1)

A(q−1)C(q−1)

]
u(t)



C

A
= F + q−k G

A

⇓

B

A
− q−k BG

AC
=

B

C

[
C

A
− q−k G

A

]
=

BF

C

y(t + k) = F (q−1)n(t + k) +
G(q−1)

C(q−1)
y(t)

+
B(q−1)F (q−1)

C(q−1)
u(t)

var[y(t + k)] = E[y2(t + k)] = E
{[

F (q−1)n(t + k)
]2}

+ E

{[
G(q−1)

C(q−1)
y(t) +

B(q−1)F (q−1)

C(q−1)
u(t)

]2
}

→ min

⇓

u(t) = −
G(q−1)

B(q−1)F (q−1)
y(t) = uMV(t)



Stability and performance of a MV controller

Stabilność i jakość sterowania regulatora MV

When u(t) = uMV(t) it holds that

y(t) = F (q−1)n(t)

u(t) = −
G(q−1)

B(q−1)
n(t)

Stability condition

The MV regulator is stable if all roots of B(q−1) lie inside
the unit circle in the complex plane, i.e., if the controlled
system is minimum phase (obiekt minimalnofazowy).

y(t) = F (q−1)n(t) = n(t)

+ f1n(t − 1) + . . . + fk−1n(t − k + 1)

var[y(t)] = E[y2(t)] = (1 + f2
1 + . . . + f2

k−1)σ
2
n



Example 1

Suppose that

A(q−1) = 1 − 1.7q−1 + 0.7q−2

B(q−1) = 1 + 0.5q−1

C(q−1) = 1 + 1.5q−1 + 0.9q−2

k = 1

C(q−1) = A(q−1)F (q−1) + q−1G(q−1)

F (q−1) = 1

1 + 1.5q−1 + 0.9q−2 = 1 − 1.7q−1 + 0.7q−2

+ q−1(g0 + g1q
−1)

{
1.5 = −1.7 + g0

0.9 = 0.7 + g1
⇒ g0 = 3.2, g1 = 0.2

u(t) = −
G(q−1)

B(q−1)F (q−1)
y(t) = −

3.2 + 0.2q−1

1 + 0.5q−1
y(t)

u(t) = −0.5u(t − 1) − 3.2y(t) − 0.2y(t − 1)

y(t) = n(t)



Example 2

Suppose that

A(q−1) = 1 − 1.7q−1 + 0.7q−2

B(q−1) = 1 + 0.5q−1

C(q−1) = 1 + 1.5q−1 + 0.9q−2

k = 2

C(q−1) = A(q−1)F (q−1) + q−1G(q−1)

F (q−1) = 1 + f1q
−1

1 + 1.5q−1 + 0.9q−2

= (1 − 1.7q−1 + 0.7q−2)(1 + f1q
−1)

+ q−2(g0 + g1q
−1)





1.5 = −1.7 + f1

0.9 = 0.7 − 1.7f1 + g0

0 = 0.7f1 + g1

⇒
f1 = 3.2
g0 = 5.64
g1 = −2.24

u(t) = −3.7u(t − 1) − 1.6u(t − 2)

− 5.64y(t) + 2.24y(t − 1)

y(t) = n(t) + 3.2n(t − 1)



Linear Diophantine equations

Liniowe równania diofantyczne

Diophantus of Alexandria (III A.C) ...

... and his book

Given a, b, c ∈ C find all solutions of the equation

ax + by = c

such that x, y ∈ C



Linear Diophantine equations

Liniowe równania diofantyczne

Example

3x + 5y = 8

This equation has infinitely many solutions of the form

x = x0 + 5d, y = y0 − 3d

where d ∈ C denotes any integer number and

x0 = 1, y0 = 1

denotes the so-called minimal solution.

Solution

Diophantine equation ax + by = c has solution iff (if and
only if) c is a multiple of the greatest common divisor of a
and b. The solution has the form

x = x0 + bd, y = y0 − ad

where {x0, y0} is the minimal solution and d ∈ C is any
integer number.



Polynomial Diophantine equations

Wielomianowe równania diofantyczne

The polynomial Diophantine equation

A(q−1)X(q−1) + B(q−1)Y (q−1) = C(q−1)

has solution iff C(q−1) is a multiple of the greatest common
divisor of A(q−1) and B(q−1). The solution has the form

X(q−1) = X0(q
−1) + B(q−1)D(q−1)

Y (q−1) = Y0(q
−1) − A(q−1)D(q−1)

where

X0(q
−1), Y0(q

−1)

is the minimal solution and D(q−1) is any polynomial.

Excercise

Find all solutions (if any) of the polynomial Diophantine
equation in the case where

A(q−1) = 1 + 0.7q−1 + 0.1q−1

B(q−1) = 1 + 0.9q−1 + 0.2q−1

C(q−1) = 1 + 0.3q−1 − 0.1q−1



Minimum-variance tracking

Śledzenie minimalnowariancyjne

A(q−1)y(t + k) = B(q−1)u(t)+C(q−1)n(t + k)

u(t) : E
{

[y(t) − yr(t)]
2
}
−→ min

yr(t) – reference signal (sygna l zadaja̧cy)

Suppose that the controlled system is minimum phase, and
that at each time instant t we know k future values of the
reference signal: yr(t + 1), . . . , yr(t + k).

Denote by ur(t) the signal that obeys

A(q−1)yr(t + k) = B(q−1)ur(t)

Observe that

A(q−1) [y(t + k) − yr(t + k)] = B(q−1) [u(t) − ur(t)]

+ C(q−1)n(t + k)

Hence, the minimum-variance tracker takes the form

u(t) − ur(t) = −
G(q−1)

B(q−1)F (q−1)
[y(t) − yr(t)]

C(q−1) = A(q−1)F (q−1) + q−kG(q−1)



Minimum-variance tracking

Śledzenie minimalnowariancyjne

u(t) = −
G(q−1)

B(q−1)F (q−1)
y(t)

+
1

B(q−1)

[
A(q−1) + q−k G(q−1)

F (q−1)

]
yr(t + k)

A(q−1) + q−k G(q−1)

F (q−1)
=

C(q−1)

F (q−1)

u(t) = −
G(q−1)

B(q−1)F (q−1)
y(t)

+
C(q−1)

B(q−1)F (q−1)
yr(t + k)

tracking accuracy / dok ladność śledzenia

y(t) − yr(t) = F (q−1)n(t)



Drawbacks of MV controllers

Wady regulatorów MV

1. Minimum-variance control is the “cheap control”
strategy, which does not account for the control effort.
In many applications a more adequate control objective
is to minimize E[y2(t)] + µE[u2(t)].

2. The MV controllers can be applied only to minimum
phase plants.

For sufficiently large sampling frequencies, i.e., for
sufficiently small values of Ts, the discrete-time model

Gd(z) = Z

{
L−1

[
1 − e−sTs

s
G(s)

]}

obtained by means of discretization of a linear
continuous-time rational system with transfer function

G(s) =
B(s)

A(s)
, deg(A) ≥ deg(B) + 3

is always non-minimum phase.

3. In some (rare) cases the MV controllers may produce
intersample ripple of the continuous-time signal observed
at the output of the controlled plant.



About zeros that should not be cancelled

O zerach, których nie należy “skracać”

Example

Consider the following MV design

y(t) = ay(t − 1) + u(t − 1) + bu(t − 2)

+ n(t) + cn(t − 1)

a = 0.7, b = 0.99, c = 0.95

1 + cq−1 = 1 − aq−1 + gq−1 =⇒ g = a + c

u(t) = −
g

1 + bq−1
y(t) = −

1.65

1 + 0.99q−1
y(t)

ringing (dzwonienie) – oscillations with period
twice the sampling period



MA controller

Regulator MA

B(q−1) = B−(q−1)B+(q−1)

deg(B) = r, deg(B−) = m, deg(B+) = l

r = m+l

where

B−(q−1) = 1 + β1q
−1 + . . . + βmq−m

m zeros that should not be cancelled:
unstable + stable but too close to the
point (−1 + j0) in the complex plane

B+(q−1) = γ0 + γ1q
−1 + . . . + γlq

−l

l zeros that will be cancelled



MA controller

Regulator MA

Denote by F+(q−1) and G+(q−1) the polynomials that
obey the following Diophantine equation

C(q−1)

A(q−1)
= F+(q−1) + q−k B−(q−1)G+(q−1)

A(q−1)

where deg(F+) = k + m − 1, deg(G+) = r − 1:

F+(q−1) = 1 +
k−1∑

i=1

fiq
−i +

k+m−1∑

i=k

f+
i q−i

G+(q−1) =
r−1∑

i=0

g+
i q−i

Note that

y(t + k) =
B(q−1)

A(q−1)
u(t) +

G(q−1)

A(q−1)
n(t)

+ F (q−1)n(t + k)

=
B(q−1)

A(q−1)
u(t) +

B−(q−1)G+(q−1)

A(q−1)
n(t)

+ F+(q−1)n(t + k)



MA controller

Regulator MA

uMV(t) = −
G(q−1)

B(q−1)
n(t)

uMA(t) = −
G+(q−1)

B+(q−1)
n(t)

u(t) = −
G+(q−1)

B+(q−1)F+(q−1)
y(t) = uMA(t)

It can be shown that the MV controller for a non-minimum
phase plant is identical with the MA controller. The name
stems from the fact that when the MA controller is applied,
one obtains

y(t) = F+(q−1)n(t) = n(t) +
k−1∑

i=1

fin(t − i)

+

k+m−1∑

i=k

f+
i n(t − i) = MA(k + m − 1)

i.e., the output of the controlled plant is a moving average
process even if there is no transport delay (k = 1).

The price for not cancelling some of the system zeros is
paid in performance degradation.



MA controller

Regulator MA

Example (continued)

Consider the following MA design

y(t) = ay(t − 1) + u(t − 1) + bu(t − 2)

+ n(t) + cn(t − 1)

a = 0.7, b = 0.99, c = 0.95

B−(q−1) = 1 + bq−1

1 + cq−1 = (1 − aq−1)(1 + f+q−1) + q−1(1 + bq−1)g+

u(t) = −
g+

1 + f+q−1
y(t) = −

0.46

1 + 0.65q−1
y(t)



THE END


