
 
 
 
IEEE Copyright Notice 
 

• ©20xx IEEE. Personal use of this material is permitted. However, permission to 
reprint/republish this material for advertising or promotional purposes or for creating new 
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 
component of this work in other works must be obtained from the IEEE. 

 
• This material is presented to ensure timely dissemination of scholarly and technical work. 

Copyright and all rights therein are retained by authors or by other copyright holders. All 
persons copying this information are expected to adhere to the terms and constraints invoked 
by each author's copyright. In most cases, these works may not be reposted without the 
explicit permission of the copyright holder. 

 



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006 4185

Generalized Adaptive Notch Filter With a
Self-Optimization Capability

Maciej Niedźwiecki and Piotr Kaczmarek

Abstract—The paper presents a self-optimizing version of a gen-
eralized adaptive notch filter (GANF). Generalized adaptive notch
filters are used for identification/tracking of quasi-periodically
varying dynamic systems and can be considered an extension, to
the system case, of classical adaptive notch filters. The tracking
properties of a GANF algorithm depend on two adaptation gains,
which should be chosen so as to match the degree of nonsta-
tionarity of the identified system. First, an analytical study of a
tracking performance of a GANF algorithm is presented. Then,
based on the obtained theoretical results, a self-optimizing GANF
algorithm is proposed, capable of automatic tuning of its adapta-
tion gains.

Index Terms—Adaptive notch filtering, frequency estimation,
system identification, time-varying processes.

I. INTRODUCTION

A. Problem Statement

GENERALIZED adaptive notch filters [1]–[3] were
designed for the purpose of identification/tracking of

quasi-periodically varying complex-valued systems, i.e., sys-
tems governed by

(1)

where denotes the normalized discrete time,
denotes the system output,
is the regression vector, is an additive noise, and

denotes the vector of time-varying
coefficients, modeled as weighted sums of complex exponen-
tials

(2)

All quantities in (1) and (2), except angular frequencies
, are complex-valued. Since the complex

amplitudes incorporate both magnitude and phase infor-
mation, there is no explicit phase component in (2).
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We will assume that both the amplitudes
and frequencies in (2) are slowly time-varying and
that , ,

, , is a complex-valued white noise of
variance , independent of the sequence of regression vectors

.
Denote by the vector of

system coefficients associated with a particular frequency

and let , where . Using
the shorthand notation introduced above, (1) and (2) can be
rewritten in the form

One of the challenging potential applications, which under cer-
tain conditions admit the formulation presented above, is adap-
tive equalization of rapidly fading multipath telecommunication
channels—see, e.g., [4]–[6].

The name “generalized notch filters” stems from the fact that
the problem of identifying quasi-periodically varying systems is
an extension, to the system case, of a classical signal processing
task of either elimination or enhancement of complex-valued
sinusoidal signals (called cisoids) buried in noise
[7], [8]

(3)

Note that (1) and (2) reduce to (3) after setting and
, . Therefore, when restricted to the special signal

case discussed above, the results developed in this paper offer
new solutions to the problem of adaptive notch filtering of com-
plex signals.

B. Contribution and Novelty

Tracking capabilities of generalized adaptive notch filters
are determined by two user-dependent tuning knobs: the small
adaptation gain , which controls the rate of amplitude
adaptation, and another adaptation gain (also small),
which decides upon the rate of frequency adaptation. It is a
well-known fact that adaptation gains of any finite-memory
adaptive filter should be chosen so as to trade off between the
filter’s tracking speed (which increases with growing gains)
and its tracking accuracy (which decreases with growing gains)
[9]. In a special case, where frequencies of a quasi-periodically
varying system drift according to the random walk model, the
optimal values of and can be obtained analytically. For

1053-587X/$20.00 © 2006 IEEE



4186 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006

the problem of frequency tracking, such analytical study of
tracking performance of a GANF algorithm was presented in
our earlier paper [10]. We have shown there that the optimal
gains are functions of a scalar coefficient —the product
of the signal-to-noise ratio and the variance of frequency
changes—which can be regarded a measure of system nonsta-
tionarity. Since is not a directly measurable quantity, such
theoretical results have a limited practical value.

The contribution of this paper is twofold. First, the frequency
tracking study, carried out in [10], is extended to an important
problem of parameter (system) tracking. Second, based on the
obtained theoretical results, a self-optimizing GANF algorithm
is proposed, capable of automatic tuning of its adaptation gains.

This paper is organized as follows. Section II is devoted to
tracking performance analysis of a basic GANF algorithm, de-
signed for a system with a single frequency mode of param-
eter variation. After summarizing known results on frequency
tracking, we derive new results on parameter (system) tracking.
Section III presents a self-optimizing version of the basic algo-
rithm; the obtained solution is next extended to systems with
multiple frequency modes. Section IV presents results of simu-
lation experiments and Section V concludes.

II. TRACKING ANALYSIS OF A GANF ALGORITHM

As our starting point, we will choose the steady-state version
of a simple generalized adaptive notch filter analyzed in [10],
which combines the exponentially weighted least squares ap-
proach to amplitude tracking with gradient search approach to
frequency tracking.

A. Basic Algorithm

Consider a quasi-periodically varying system with a single
frequency mode of parameter variation ( ), governed by

(4)

Note that the assumed model of parameter variation can be
rewritten in a more explicit form as

(5)

where . According to (5), parameter changes of
the analyzed system can be attributed exclusively to changes of
the instantaneous frequency . Frequency increments will be
further denoted by

Assume that the sequence of regression vectors , inde-
pendent of and , is wide-sense stationary and per-
sistently exciting, and that the matrix

is known a priori. Then the steady-state single-frequency ver-
sion of the GANF algorithm presented in [10] can be written in
the form ([10, (31)])

(6)

In the above algorithm denotes a small adaptation gain,
which controls the rate of amplitude adaptation, and , also
set close to zero, is another gain which decides upon the rate of
frequency adaptation. Generally speaking, both design parame-
ters should be chosen so as to trade off the tracking speed of a
generalized adaptive notch filter (which increases with growing

and ) and its noise rejection capability (which decreases with
growing and ).

Analysis of the tracking properties of the basic algorithm will
be an important step towards development of a fully adaptive
procedure, i.e., procedure with built-in mechanisms for auto-
matic adjustment of the adaptation gains and .

B. Frequency Tracking Properties of the Basic Algorithm

The frequency tracking capabilities of the algorithm (6) were
examined in [10].

Denote by the frequency estimation
error and let

, where and . It can be
easily checked that is a complex-valued white noise with
variance , , and that

, .
Combining the approximating linear filtering (ALF) tech-

nique proposed by Tichavský and Händel [7] for analysis of
“classical” adaptive notch filters with a stochastic averaging
method [11], which is a well-established approach to analysis
of adaptive systems, the following approximation was obtained
in [10]:

(7)

where

(8)

and , ( denotes the backward shift
operator).

As is straightforward to check, the approximating linear fil-
ters and are asymptotically stable for any
and from the interval (0,1).

To obtain further insights into the tracking behavior of
a GANF algorithm, we will assume that the instantaneous
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frequency evolves according to the random walk model,
i.e., that the frequency increments form a white noise
sequence, independent of . In a case like this, it holds that

where

is an integral evaluated along the unit circle in the plane and
denotes any stable proper rational transfer function.

By means of residue calculus [19], one obtains

(9)

where and the approximation holds for suffi-
ciently small values of and .

Denote by and the values of and that minimize
the mean-squared frequency estimation error. Straightforward
calculations yield

(10)

where the scalar coefficient

(11)

(the product of the signal-to-noise ratio and the variance
of frequency changes ) can be regarded a measure of system
nonstationarity.

Note that, according to (7), for random walk frequency vari-
ations the GANF algorithm (6) yields unbiased frequency esti-
mates. Additionally, as was shown in [10], under Gaussian as-
sumptions it is a statistically efficient estimation procedure, i.e.,
the minimum mean-squared frequency estimation error given by
(10), achieved when the design parameters are optimally tuned,
is equal to its limiting value set by the Cramér–Rao inequality.

C. Parameter (System) Tracking Properties of the Basic
Algorithm

Denote by the estimate of the noiseless
system output . The quantity

where will be further called the system

tracking error. Let and

As was argued in [10], when the adaptation gains and
are small, the quantity varies slowly compared to .

Therefore, using the method of stochastic averaging, one arrives
at

(12)

Note that the mean-squared system tracking error, which is ap-
proximately equal to the excess mean-squared one step ahead
prediction error

(13)

reflects the predictive ability of the system model. Hence, from
the practical viewpoint, it is a more meaningful statistic than the
mean-squared parameter tracking error . Both
measures coincide when is similar to an identity matrix.

As shown in the Appendix , the mean-squared system
tracking error, yielded by the algorithm (6) applied to the
system (4) subject to random walk frequency drift, can be
approximated by the following expression:

(14)

where denotes the number of estimated system
coefficients.

In the special signal case ( ), the result derived above be-
comes identical with the expression for the mean-squared signal
tracking error given by [10, (18)]. We note, however, that deriva-
tion of (14) is not a trivial extension of the analogous derivation
presented in [10].

Denote by and the values of and that minimize (14).
It is easy to check that

(15)

Note that according to (10) and (15), the settings that are optimal
from the system tracking (prediction) viewpoint are not the best
choice from the frequency tracking viewpoint and vice versa. It
should be stressed that—in the majority of system-oriented ap-
plications—minimization of system tracking errors, rather than
minimization of frequency tracking errors, is our main objec-
tive. For example, when tracking the time-varying impulse re-
sponse coefficients of a rapidly fading communication channel,
one is usually not interested in its frequency components anal-
ysis—all that matters is how well the predicted channel output
approximates the true channel response.

III. OPTIMIZATION OF A GANF ALGORITHM

The analytical results presented in the previous section have
some obvious limitations. First, the random walk model of fre-
quency variation can be criticized as rather naive. Second, in
order to optimize filter settings, one should know the rate of
nonstationarity of the identified system, which is not a directly
measurable quantity.
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The first objection does not seem to be critical. The point is
that, due to its finite-memory property, the GANF algorithm
does not rely heavily on information coming from the remote
past, and hence its local performance analysis does not require
an adequate “global” model of frequency variation. As long as
system frequencies change slowly over time, the random walk
model with appropriately chosen rate of change can be con-
sidered a good local (in time) description of real frequency vari-
ations, similarly as a linear regression model can be often re-
garded a satisfactory local (in space) description of a nonlinear
plant around a given operating point.

The second limitation is more important from the practical
viewpoint. When the rate of system nonstationarity is not
known a priori, or when it changes with time, an autotuning
mechanism of some kind should be provided to perform online
optimization of the algorithm’s tracking performance. One can
attempt to solve this problem in two different ways.

Using the indirect optimization approach, one may set

where the functions and are chosen in accordance with
(10) or (15) and denotes a local estimate of the rate of
system nonstationarity. In the signal processing case, the indi-
rect approach was suggested (but not elaborated) by Tichavský
and Händel [7].

The second solution, advocated in this paper, is based on di-
rect optimization. The term “direct optimization” is used to em-
phasize the fact that in this approach all adjustments are made
by means of direct minimization of the observed prediction er-
rors, regarded as functions of and —in contrast to the indirect
approach, where all decisions are based on anticipated effects
which, according to theory, and should have on prediction
errors. From the practical viewpoint the direct method, which
incorporates decision feedback, is more advisable than the indi-
rect method, which rests on feedforward compensation only.

Direct optimization can be performed using either sequential
or parallel estimation techniques. The first case uses a single
tracking algorithm equipped with adjustable adaptation gains.
The second case takes several algorithms with different gain
settings, runs them in parallel, and compares them according
to their predictive abilities—see [12] and [9].

In this paper, we will exploit the sequential approach, which is
computationally less demanding and which provided very good
tracking results in all preliminary tests. We will show that the
adaptation constants and can be optimized using the method
of recursive prediction error (RPE).

A. Tuning Rule

Consider the problem of minimization of a system tracking
error. Before we derive the basic autotuning rule, we will preop-
timize the GANF algorithm. Observe that irrespective of which
variant of the optimization strategy is chosen, the optimal value
of is proportional to the square of the corresponding value of

. In particular, when minimization of system tracking errors
is our main objective, it holds that . This suggests
that setting may be a good way of reducing
the number of design degrees of freedom of a GANF algorithm

from two to one . Assume, for the time being, that the
covariance matrix and the scalar coefficient are
constant and known (we will relax both assumptions later on).
Then the preoptimized version of (6) can be written in the form

(16)

where .
We will adjust the adaptation gain recursively, by mini-

mizing the following local measure of fit, made up of exponen-
tially weighted prediction errors

The forgetting constant ( ) decides upon the effec-
tive averaging range. Note that, according to (13), minimization
of the mean-squared system tracking error is equivalent to min-
imization of the mean-squared prediction error, and that
is the local estimate of the latter quantity (up to the scaling
factor). Therefore minimization of is fully consistent
with the system tracking oriented optimization strategy.

To evaluate the estimate , we will
use the standard RPE approach. According to Söderström and
Stoica [13], the RPE algorithm can be expressed in the form

where all derivatives are taken with respect to .
Denote

Straightforward calculations lead to
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A simple gradient-based version of the optimization strategy de-
scribed above was used for automatic tuning of classical system
identification algorithms: the least mean squares (LMS) algo-
rithm [14] and the exponentially weighted least squares (EWLS)
algorithm [15, p. 160], [16]. In the signal processing case, the
RPE approach was used, for tuning of “ordinary” adaptive notch
filters, by Dragošević and Stanković [17], [18].

B. Refinements

When the covariance matrix is not known and/or it is time-
varying, one can replace it with the following exponentially
weighted estimate:

where denotes the forgetting constant. We note
that the inverse of can be also evaluated recursively by
exploiting the well-known matrix inversion lemma [13].

The coefficient , which was also assumed to be known and
constant, can be replaced with

Our last modification is a safety valve: to prevent the algorithm
from erratic behavior in extreme situations (e.g., in the presence
of sudden amplitude and/or frequency jumps), it is advisable to
set the maximum allowable value of . Each time the calculated
value of exceeds its upper limit, it should be truncated, for
safety reasons, to . Similarly, should be set to zero
whenever the calculated value gets below zero.

C. Extension to the Multiple Frequencies Case

So far we have been assuming that the identified quasi-peri-
odically varying system has a single frequency mode. Now we
will show how the obtained results can be extended to the mul-
tiple frequencies case. We will use the concept of frequency de-
composition of the identified system [2]. Denote by

the output of the th subsystem of (1), i.e., subsystem associ-
ated with the frequency . If the signals were
available, one could design independent GANF algorithms of
the form

etc

each of which would take care of a particular subsystem. Since
, the final estimation result could be easily

obtained by combining partial estimates .
Even though the signals are not available, one can easily
estimate them using the formula

where denotes the predicted
value of , yielded by the estimation algorithm designed to
track parameters of the th subsystem. Note that after replacing

with , one obtains

i.e., all subalgorithms are in fact driven by the same “global”
prediction error .

From the system-analytic point of view, the distributed es-
timation scheme described above is a parallel structure made
up of identical (from the functional viewpoint) blocks. Each
block tracks a particular frequency component of the parameter
vector .

D. Self-Optimizing Algorithm

After combining all earlier results, the proposed self-opti-
mizing multiple-frequency generalized adaptive notch filtering
algorithm can be summarized as follows:

if
if
if

(17)

Interestingly, as a “byproduct” of the system-oriented analysis,
carried out in this paper, one obtains a new signal processing
algorithm: after setting , , and , , the
algorithm (17) reduces down to a novel self-optimizing adaptive
notch filter for complex-valued signals.

The recommended way of selecting initial conditions for the
algorithm described above is by means of preprocessing. We
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have shown in [3] that all initial conditions needed to start (or
restart) the GANF algorithm can be inferred from the nonpara-
metric DFT-based system identification results, obtained for a
short startup fragment of the input/output data of length

. This includes the number of frequency modes , the ini-
tial values of frequency estimates , the initial values
of parameter estimates , and the initial estimate of the
covariance matrix (the algorithm is deliberately started
in the middle of the analysis interval).

The initial values of , , and
can be set to zero. However, to avoid rough start of the auto-
tuning part of the algorithm, it is recommended that the adapta-
tion gains are kept constant at their startup values
until the quantities reach their steady-state levels.

It is known that in order to guarantee that a hierarchical, mul-
tilayer adaptive system works reliably, the adaptation time con-
stants of consecutive layers should be much larger than the anal-
ogous constants of the preceding layers—see, e.g., remarks on
the frequency-domain design guidelines for adaptive systems,
presented in [20, p. 302]. This useful rule of thumb leads to the
following constraint:

(18)

which can be incorporated in practice by setting
. Computer simulations confirm that the forgetting

factor plays a relatively insignificant role; it can be set, for
example, to . Finally, the upper truncation level
can be set equal to 0.2.

IV. SIMULATION RESULTS

To check validity of (14), the following two-tap finite impulse
response (FIR) system (inspired by channel equalization appli-
cations) was simulated:

(19)

where denotes a white 4-QAM input sequence
( , ) and denotes a complex-valued
Gaussian measurement noise. The impulse response coeffi-
cients of this system were modeled as nonstationary cisoids

, , with time-invariant complex
“amplitudes” . Note that in
this case , , and .

The frequency evolved according to the random walk
model with the starting value set equal to and with
the variance of frequency increments set equal to .
Four noise levels were considered ( , and )
to check tracking performance of the GANF algorithm under
different SNR conditions (0, 5, 10, and 20 dB, respectively).

Fig. 1 shows comparison of theoretical evaluations, based on
(14), with the results of computer simulations. Each plot illus-
trates dependence of the mean-squared system tracking error on

in the case where . All experimental points
were obtained by means of double averaging: over time (10 000
iterations) and over different realizations of (50 realiza-
tions). Note good agreement between the theoretical curves and
the results of computer simulations.

Fig. 1. Variance of the system tracking error " (t) for a two-tap FIR system
with a single frequency mode subject to a random walk drift. The theoretical
results (solid lines) are compared with simulation results obtained for different
values of �, given  = 2� ; the corresponding signal-to-noise ratios were 0 dB
(�), 5 dB (+), 10 dB (�), and 20 dB (�).

The second experiment was set to check effectiveness of the
proposed gain-scheduling rule. The simulated FIR system, also
governed by (19), had two quasi-periodic modes of parameter
variation ( )

with and
. The instantaneous frequencies

and were modeled as two independent random
walk processes with time-varying rates of change

for
for

for
for

and initial conditions set to , . The
variance of the measurement noise was also time-depen-
dent

for
for

The evaluation of the gain scheduling rule was started at the
instant , after the GANF algorithm (17) has reached
its steady state. The entire analysis interval ,
covering 8000 samples, was divided into four subintervals

, , , and
, corresponding to four different variance patterns.

The optimal values of adaptation gains, evaluated according to
(15), were for ; ,

for ; , for
; and , for .

The self-optimizing GANF algorithm (17) was implemented
with , which was consistent, for the analyzed
system, with (18) and which yielded satisfactory tracking re-
sults; adoption of smaller values of , e.g., , led
to performance deterioration.

The results, gathered in Table I, show that the proposed
gain scheduling rule does a pretty good job in optimizing
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TABLE I
AVERAGE VALUES OF THE EXCESS OUTPUT PREDICTION ERRORS OBSERVED

FOR THE OPTIMAL CHOICE OF ADAPTATION GAINS, FOR ADAPTIVE CHOICE

OF ADAPTATION GAINS AND FOR FIVE FIXED VALUES OF � = � ; ALL

AVERAGES WERE COMPUTED FROM THE RESULTS OF 50 SIMULATION

EXPERIMENTS FOR THE ENTIRE ANALYSIS INTERVAL (T ) AND FOR

EACH OF ITS FOUR SUBINTERVALS (T , T , T , T )

Fig. 2. Evolution of the instantaneous frequencies ! (t) and ! (t) (two upper
plots) and the corresponding gain estimates � (t) and � (t) (two lower plots)
observed in a typical simulation experiment; thin lines show the optimal values
of � and � .

the tracking performance of a GANF algorithm. Note that
the self-optimizing algorithm works better than any of the

Fig. 3. Ensemble averages of the gain estimates� (t) and� (t) obtained from
50 simulations; thin lines show the optimal values of � and � .

fixed-gain algorithms, and that it is only slightly (about 10%)
worse than the optimally tuned algorithm, which incorporates
knowledge of the true rates of system nonstationarity, not avail-
able in practice. Even though the single-realization estimation
results, shown in Fig. 2, may look excessively noisy (this is
clearly a consequence of a low sensitivity of the prediction error

to and in the explored range of ), the ensemble
averages, depicted in Fig. 3, fully confirm that the RPE-based
gain scheduling rule works correctly.

V. CONCLUSION

We have shown that a generalized adaptive notch filter,
used for identification/tracking of quasi-periodically varying
systems, can be equipped with an autotuning loop, capable
of performing online optimization of the algorithm’s tracking
performance. The proposed adaptation mechanism combines
analytical results, derived for GANF algorithms, with the
recursive prediction error approach to optimization of adaptive
filters. Results of computer simulations fully confirm effective-
ness of the proposed scheme.

APPENDIX

DERIVATION OF (14)

It can be shown that (see [10, Appendix III])

(20)

where . Since ,
one obtains , where

and . Note that
and are complex-valued (vector) random vari-

ables, i.e., is not a real part of and is
not its imaginary part. Note also that both variables are un-
correlated (due to the uncorrelatedness of and )
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and . Since
, it holds that

(21)

where

After combining (20) with (7) and (21), one arrives at

Note that

(22)

where . Furthermore

(23)

where denotes the spectral density matrix of the se-

quence

To evaluate we will refer to the standard linear filtering
results. Suppose that

where are wide-sense stationary random pro-
cesses and are stable transfer matrices.
Then it holds that

where denote the cross-spectral den-
sity (matrix) functions

Since the processes , and
are mutually uncorrelated, the cross-spectral density

functions for the pairs , , and
are zero, leading to

It is straightforward to check that

Combining all relationships derived above and taking into
account the fact that and

, one arrives at

Observe that and
, leading to

Using (22) and (23), one obtains
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Finally, by means of residue calculus, one arrives at

which leads in a straightforward way to (14).
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